MD AL-NAIM
IoT & Robotics Autonomous Navigation AI & Analytics

Engineer with a bias to ship: indoor autonomy, explainable ML, and polished tools.

B.Eng. (IoT) student at Savonia UAS. Delivered a UWB-guided navigator, a SHAP-backed churn model, and a local AI recipe app.

±0.25 cm
Indoor nav precision
AUC ≈ 0.93
Churn model
2–3× faster
Recipe creation

Core strengths

PythonROSFlaskUWB (Iiwari)TCP/Socketscikit-learnXGBoostSHAPDockerLinuxFlet

Technical Skills

Programming

Python, C, JavaScript, SQL (MySQL)

Frameworks & Libraries

ROS, Flask, Flet, scikit-learn, XGBoost, SHAP, pandas, NumPy, Matplotlib

Tools & Tech

Raspberry Pi, Arduino, UWB (Iiwari), Nokia 5G, REST APIs, TCP/Socket, Git, Docker, Linux, HTML5/Canvas

Experience

Project Worker, IoT & Robotics — DigiCenter North Savo (Savonia UAS)

May – Aug 2025 • Kuopio, FI
  • LiDAR-free indoor navigation using dual UWB tags (10 Hz) + odometry yaw; custom A*→spline→Pure-Pursuit pipeline.
  • Integrated Iiwari Cloud API and aligned Y-down map to ROS yaw frames.
  • Real-time Flask + Canvas visualizer (pose, path, goals, telemetry).
  • Supervisory pause/resume via TCP; pre-built AI obstacle detection over Nokia 5G.
  • Result: reliable goal convergence with practical indoor precision.

Selected Projects

Let’s talk

Hiring for IoT, robotics, or ML roles? I’m available for internships and junior positions.