MD AL-NAIM

← Back to Projects

ProcureFlow – Procurement Analytics (Sievo-style)

Problem

Global procurement teams struggle to unify multi-source spend data (CSV/API/ERP), normalize currencies, and produce supplier insights like budget variance, regional mix, and monthly trends. The question: “Can we deliver a reliable, explainable pipeline that transforms raw spend into business-ready analytics?”

My Approach

1) Python ETL (Clean & Enrich)

2) SQL Star Schema

Fact-Dimension design for reliable analytics & DAX measures: FactSpend.Supplier_ID → DimSupplier.Supplier_ID, FactSpend.Category_ID → DimCategory.Category_ID.

3) Power BI Dashboard

Live Dashboard

If the report doesn’t load, open it directly in a new tab: Open Power BI.

Impact

Tech Stack

Python (pandas) • SQL (star schema) • SQLite (demo warehouse) • Power BI Desktop/Service • Azure-ready architecture

Architecture

Sources

CSV: suppliers, categories, FX, budgets, transactions

ETL

Python cleanse → EUR conversion → outlier clip → export Fact/Dim

Analytics

SQL star schema → DAX measures → Power BI visuals & sharing

DimSupplier ───► FactSpend ◄─── DimCategory
    

Project Files

All cleaned data files, ETL scripts, SQL queries, and documentation are available on GitHub.

🔗 View Project on GitHub
Discuss a role View CV